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n-Cation Radical Generation via Aerial Oxidation of a Porphyrin
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ESR spectroscopy and simulation suggest that meso-tetrakis(3,5-di- tert-butyl-4-hydroxyphenyl)porphyrin 1
undergoes aerial oxidation in acidified solutions to give a long-lived n-cation radical with a quasi-2A,, ground state.

We have previously reported the facile two-electron aerial
oxidation of 1 in basified solutions.! Oxidation proceeds via a
radical intermediate whose strong triplet ESR spectrum is
indicative of unpaired electron density localised over a
3,5-di-tert-butyl-4-phenoxy meso-substituent.le

This radical subsequently decays with pseudo first-order
kinetics? to the final ESR-silent product, shown by 'TH NMR
spectroscopy to be the porphodimethene 214 in solution, and
by X-ray crystallography to be the tautomeric tetraquino-
methide xanthoporphyrinogen 33 in the solid state.
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We now report that facile aerial oxidation of 1 also takes
place in acidified solutions. This time, however, the radical is
long-lived in the presence of air. We also present compelling
evidence suggesting that the unpaired electron is delocalised
over the macrocycle to form a porphyrin n-cation radical. As
such, we believe this constitutes the first evidence for: (i)
porphyrin ni-cation radical generation via aerial oxidation, (i)
the generation of such a radical from a porphyrin dication.

A solution of porphyrin 1 (1.5 X 10-2 mol dm~3) in
1,1,1-trichloroethane (TCE; 1 ml) in air, was acidified with 5
drops of trifluoroacetic acid (TFA). The solution immediately
turned deep-green, typical of meso-tetraaryl porphyrin di-
cations* (PH42+), but also gave a singlet ESR spectrum [g
2.007, Fig. 1(a)] which did not decay appreciably over a 2 h
period. This spectrum resembled those of meso-aryl-substi-
tuted metalloporphyrin (MTPP+*) nt-cation radicals generated
in the presence of oxygen.5

Deoxygenation of the above solution (by bubbling N,) gave
an ESR spectrum showing an extensive hyperfine structure of
29 lines [Fig. 1(b)] superimposed on the singlet envelope.
Again, this resembles the ESR behaviour of deoxygenated
MTPP+* solutions, which show a hyperfine structure of nine
lines superimposed on the singlet envelope.6 Deoxygenation
of the porphyrin solution prior to acidification with (degassed)
TFA did not give an ESR spectrum.

MTPP++ m-cation radicals have an unpaired electron
density in a HOMO of a,, symmetry,57 (Fig. 2) so generating
a quasi-2A,, ground state. The nine-line ESR spectrum arises
from an unpaired spin density interacting with four equivalent
nitrogens (I = 1; ay = 0.15 mT)® and eight equivalent
ortho-hydrogens (I = %; ay = 0.03 mT)6 on the meso-aryl
groups. This smaller interaction is thought to result from the
spin density at the meso-positions” ‘leaking’ via hyperconjuga-
tive and inductive effects, onto the meso-substituents.8

Our simulation of the 29-line ESR spectrum derived from 1
[Fig. 1(¢)] assumes a quasi-2A,, ground state for the radical
cation (g 2.007). It uses experimental ESR parameters for the
four equivalent hydrogens attached to the central nitrogens
(auay = 0.05 mT) and eight equivalent ortho-hydrogens
attached to the meso-substituents (ay2) = 0.0828 mT), and a
best-fit hyperfine splitting constant for the four equivalent
nitrogens (an = 0.0962 mT).
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Fig. 1 (a) ESR spectrum obtained on addition of TFA (5 drops) to a
TCE solution of porphyrin 1 (1.5 X 10~-2mol dm~3) in the presence of
air (g 2.007). (b) The same solution after degassing with nitrogen:
ay(y = 0.05 mT; ayzy = 0.0828 mT. (c) Simulated ESR spectrum
using best-fit nitrogen hyperfine splitting constant, ay = 0.0962
mT; line-shape, 85% Gaussian/15% Lorentzian; spectral width, 0.07
mT cm~1; half-width at half-height, 0.042 mT.

Fig. 2 The a,, HOMO for a porphyrin dication (after Gouterman#)

Interestingly, the simulated ay and observed ay2) hyperfine
splitting constants differ markedly from those obtained for
MTPP+*: there is a decrease in ay and an increase in ayy).
Also, an) > auq), indicating that the unpaired electron
interacts more strongly with the ortho-hydrogens on the
meso-substituents than those on the central nitrogens. This is
probably due to the radical (PH43+*) being derived from a
porphyrin dication (PH,2+); the increased positive charge on
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Fig. 3 UV-VIS spectra of a solution of porphyrin 1 (8 X 10-¢
mol dm—3) in CH,Cl; (@) on addition of TFA (0.2 ml, >0.4 mol dm—3)
after 5 min; (») on addition of TFA (0.2 ml, <0.04 mol dm~3) after 5
min; (c) on addition of TFA (0.2 ml, <0.04 mol dm~3) immediately;
(d) neutral solution

the macrocycle (compared to MTPP+*) leading to a decrease
in spin density over the central nitrogens.

meso-Aryl-substituted porphyrin dications also undergo
extensive macrocyclic deformations? leading to a decrease in
the dihedral angle between the aryl groups and the macro-
cyclic plane. In this context, it is worth noting that the
two-electron oxidation of 1 in base generates a macrocycle
with co-planar meso-substituents.? It is likely, therefore, that
in the m-cation radical of 1, the porphyrin and the meso-
substituent n-systems are strongly coupled, allowing spin
density at the meso-position to delocalise onto the aryl
moieties.
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UV-VIS spectroscopy of dilute acidified (8 x 10-9°
mol dm—3) solutions of 1 proved interesting. On addition of
moderate to high concentrations (>0.4 mol dm~3) of TFA, a
UV-VIS spectrum was obtained that closely resembled those
of MTPP+* m-cation radicals [Fig. 3(a)].1® However, addition
of low concentrations (<0.04 mol dm—3) of TFA initially gave
the typical (unoxidised) porphyrin dication spectrum [Fig.
3(c)], which changes over 5 minutes to one that closely
resembles the two-electron oxidised product, 2 or 3, in acid
[Fig. 3(b)].1« All this suggests that in acidified solutions direct
one-electron aerial oxidation of 1 is not taking place.

PH,2+ + PH 4+ = 2 PH,3+ (1)

We speculate on a possible mechanism. On addition of acid,
two-electron oxidation takes place first. At higher TFA
concentrations, this product then undergoes further protona-
tion, followed by conproportionation with the unoxidised
dication of 1 to form the m-cation radical [see eqn. (1)], a
precendent for which exists in the tetraquinocyclobutane
series.!! We shall report more fully on the mechanism of this
oxidation elsewhere.
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